<img height="1" width="1" style="display:none;" alt="" src="https://px.ads.linkedin.com/collect/?pid=2581828&amp;fmt=gif">
Plastic Recycling Plant Energy Efficiency

Recycling Plant solution: improving the profitability of a plastics recycling plant through energy efficiency.

The problem

Plastics recycling is a low-margin business with prices largely driven by wider forces and out of their direct control.

This makes understanding how costs are incurred at a microscopic level and then directing an organisation on the ways that they can improve them through data a major opportunity to make profitability improvements.

So, when our client wanted to look at energy efficiency, we were able to deliver them an solution that could do that and much more.



How our Recycling Plant solution can have a significant impact on the bottom-line.

The solution

To tackle the challenge of finding energy efficiency opportunities, we created a real-time Recycling Plant solution on our integrated real-time data, AI + IoT platform, that integrates all relevant data sources and enables the business to monitor, predict and optimise energy use.

We began by monitoring energy consumption at the line level, installing wireless meters at the machine switchboards. We also wanted to relate this to the amount of product processed, so we also extracted a serial output from a load cell at the end of each line.

Through doing this we not only found opportunities to reduce energy consumption, but we were also able to relate our experience in food and beverage manufacturing and demonstrate that there were large overages (‘giveaways’) in almost every bag of recycled nurdles. Additionally, there were also line stoppages, which occurred when operators allowed bags to overfill and block the output silo, that were having a significant impact on downtime that could and should be addressed.

Defining what data to collect is critical
We began by identifying the key metrics required to achieve the desired business outcomes. In this solution, these included:

  1. Energy consumption at a machine level
  2. Energy tariffs
  3. Recycling throughput data
  4. Continuous and final weight of each bag
  5. Number of bags filled per hour, per day

Initial goals of the solution
The first goals of the project were to connect to the load cell using an RS232-WiFi module, and collect energy data using a Wattwatchers wireless energy meter. That data would be sent in real-time using a 4G gateway to the Rayven cloud to provide the ability to:

  1. Monitor the throughput, weight and energy consumption data that’s being received from the equipment via a web-based and mobile system
  2. Enable device management monitoring for the RS232 and energy meter
  3. Define business logic in order to visualize key business insights
  4. Provide notifications via email or SMS when there was machine downtime or when throughput was below the hourly target
  5. Collect data to compare performance between different lines, machines and feedstocks
  6. Provide a real-time throughput and waste metric on the mobile phones of management and line managers
  7. Connect with the ERP system to collect daily targets and upload bag weight, which was previously being manually entered
  8. Leverage Machine Learning and GenAI to train and identify optimisations via the Rayven platform
  9. Test the application, making sure all of the above goals are met, based on the below solution architecture

Plastic Recycling Plant Energy Efficiency – Rayven


Before setting the solution live, we tested four critical aspects of the solution:

The Rayven data, AI + IoT platform is built with security as a top priority and our proprietary security architecture ensures that data is secure at all points of the environment.

The solution includes data encryption in transit from device-to-cloud, as well as device authentication; security (Bearer) tokens; SSL, AES and RSA encryption; as well as additional device security checks done via automated polling.

The first data-point we set out to connect was the load cell, which was achieved using a RS232-Wi-Fi module. In addition, we connected to the machines the Wattwatchers energy meter via their 4G gateway, before connecting to the customers ERP system so that we could get the weekly planned processing information, (which was integrated to Rayven via a pull API on a hourly basis).

Data integrity
As the solution is only as good and reliable as the data you collect, making sure we were getting continuous, reliable connectivity would mean that the data the solution is receiving is always up-to-date and reliable – essential if you are to rely on it to make business decisions in real-time. With that, it was critical for us to test that the data we were seeing on the factory floor 100% matched what we were seeing in the dashboards, as well as build-in capability to back-fill data in sequence in the event that the connection ever went down. An example of this was that, in the course of testing, we encountered several incident where the RS232 was switched off by mistake, affecting the continuous flow of data, so we were able to change its location so that it was not humanly reachable and disturbed.

Industrial data science
The objective of exploratory data analysis was to observe trends in the data and compare them with what was happening on the factory floor, which included:

  1. Forecast time to fill a 1T bulk container, based on processing time
  2. Forecast cost of energy per machine, per day vs. throughput
  3. Create a new metric of cost of energy per kg of plastic
  4. Compare energy efficiency between different machines
  5. Identify waste and over filling causes
  6. Calculate giveaway in financial terms

What’s next?

After providing evidence of the amount of giveaway in dollar terms, which amounted to tens of thousands of dollars per week, and providing insights into how to reduce reduce energy costs by smarter machine utilisation, we are now applying the same solution to additional facilities with the aim to compare facility performance. This will, in turn, will provide additional data points and highlight further performance improvement opportunities across all sites.

Key Features of our Recycling Plant solution.

All of our Recycling Plant solution's features were customised to fit the customer's specific business objectives, but can be adjusted to meet your precise need.

Real-time throughput

Automated data collection and ERP upload replaced a labour-intensive and time-consuming manual process of weighing, labelling, and data entry.

Alerts and notifications

Immediate SMS or email alerts of line stoppages and bulk container completion.

Real-time waste and giveaway

Monitor the extrusion performance of a feedstock that is still being shredded so you can make adjustments to the batch.

Energy efficiency

Changing electricity costs from an overhead to a per kilo of nurdles value allows directed energy performance improvements to be made by feedstock or line.

Automated reporting

Instead of dashboards, sometimes you need a report in your inbox to review weekly or monthly performance. Automate reports and have them emailed to you on schedule.

Device management monitoring

Monitor all of your devices and sensors at scale, so that you can identify issues or maintenance requirements.

How IoT technology can have a significant impact on the bottom-line.

The real business outcomes driven by our Plastic Recycling Plant Energy Efficiency solution

Reduced giveaway Reduced giveaway

Maintained continuous oversight of each bulk container and ensured overage is maintained at an acceptable level.

Fewer stoppages Fewer stoppages

Prevented silo blockages by providing notifications to operators and ensuring bulk containers were not overfilled.

Reduced energy consumption Reduced energy consumption

Energy is continuously used – for example maintaining extrusion jacket temperatures – so gave transparency to how much and changed processes to prevent stoppages and downtime.

Increased throughput Increased throughput

Understood how different feedstocks perform on each line (shredder and extruder) so that you resources could be better allocated.

Greater predictability Greater predictability

Knowing what the energy cost is per kilo of nurdles helped to better plan for profitable production.

Increased margins Increased margins

Increased uptime, reduced energy consumption and less giveaway all added up to more profit.

Did you know?


Pricing & plans

Simple, fair pricing that scales with your business model.



Rayven integrates with any asset, device or system.

4 Weeks

Solution live

Create custom solutions in weeks not months.

2 Weeks

Demonstrate ROI

Discover opportunities for business improvement.

See Rayven in action

One of our data science, AI + IIoT specialists will contact you for a live one-on-one demonstration or to answer any questions.